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Abstract

Archival satellite imagery contains massive quantities of largely untapped, objective data

documenting the development of nations over time. A key obstacle to leveraging these images

for the purposes of advancing population science research has been the lack of systematic

methods for quantifying the visually observable changes in a manner that scales efficiently.

This paper succeeds in quantifying economically relevant features pertaining to building de-

velopment, such as square footage and geographical location, from satellite images spanning

the years 2005-2009 with an F1-score of 0.8081 in a particularly challenging classification set-

ting. We implement a principled image preprocessing pipeline and a version of the SegNet

convolutional neural network architecture described by Badrinarayanan et al. (2016).

1 Introduction

Satellite images contain a wealth of data about the natural and built environment as well as animal

and human populations, and have the potential to revolutionize studies of change in all of these

dimensions across the entire globe. Moreover, the reach of imagery is unparalleled: it covers areas

that have been extremely difficult to monitor, including conflict zones and areas ravaged by natural

or man-made disaster, and extends back several decades. This paper leverages mathematical

tools to automate a process which extracts reliable information from satellite imagery so that the

information can be profitably exploited to advance science.

Aceh, located on the northern tip of the island of Sumatra, Indonesia, is an area for which the

application of this methodology is immediately valuable. In 2004, the Sumatra-Andaman earth-

quake spawned a tsunami which killed over 230,000 people (about 5 percent of the population)

along the coast of Aceh. In some areas, the natural and built environments were devastated by the

tsunami whereas other coastal areas were left untouched due to the wave direction and local topog-

raphy. This disaster was followed by one of the largest post-disaster reconstruction efforts in any

low/middle income country, and yet, apart from historical satellite imagery, there is no systematic

data regarding where and when reconstruction has taken place, or linking that reconstruction to

changes in the economic prosperity, health, and well-being of the Acehnese population. Enabling

the reliable extraction of markers of reconstruction in satellite imagery of Aceh, and integrating

those changes with data from population-representative surveys, would substantially improve our

understanding of economic disaster and recovery. This research establishes the feasibility of using

image processing in combination with advanced machine learning technologies to extract reliable

data on building reconstruction in Aceh, and lays the foundation for the extraction a wider variety

of object-level features (road square area and location, agricultural plot square area, variety, and

location, etc.) in future work.
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Neural networks require a body of ground-truthed imagery data from which they can learn to

distinguish visual features that uniquely identify members of each pertinent class. We systemati-

cally created a dataset which includes over 9 million manually labeled building pixels and captures

urban, rural, beach-side, and inland regions of Aceh between 2005 and 2009. The diversity of the

imagery data contributes to the difficulty of the classification problem, but also exposes the network

to a wider variety of relevant examples, reducing systematic error and increasing the generalizabil-

ity of the model. Then, we leveraged several mathematical tools in order to construct a rigorous

image preprocessing pipeline which augments the total available information in our imagery data

while preparing it for interpretation by the neural network. Doing so required the application of

Gram-Schmidt pansharpening, image splitting, normalization, and the application of affine trans-

formations. After processing the images, we implemented a neural network architecture ubiquitous

in the computer vision and machine learning literature, SegNet, in order to perform the pixel-wise

classification task (Badrinarayanan et al., 2016).

Ultimately, this paper describes a procedure which enables the linkage of algorithmically gener-

ated measures of infrastructural and agricultural change to population representative survey data

collected in Aceh. Specifically, the Study of the Tsunami Aftermath and Recovery (STAR), is a

large-scale longitudinal survey that has tracked the lives of tsunami survivors over the last 15 years

and began 10 months prior to the tsunami. There are over 30,000 respondents in the survey with

over 97 percent having been interviewed at least once post tsunami. In future work, associating

algorithmically extracted measures of economic change over the last two decades with population-

representative survey data from that period will allow us to supplement STAR survey data with

broader indicators of development contained in time-series satellite imagery but otherwise impos-

sible to isolate via survey or administrative methods. In achieving this goal, we will gain greater

insight into the effects of redevelopment on the physical and mental well-being of the Indonesian

population, contributing to the population health literature.

2 Review of Literature

For several decades, satellite imagery has been leveraged to measure environmental change through

variation in land cover, albeit on a relatively small scale (Lillesand, Kiefer and Chipman, 2014;

Foody 2002). Recent research has exploited night light imagery on a large scale to proxy economic

outcomes at a fixed point in time Henderson et al., 2012; Ghosh et al., 2013, for example; but see

Gillespie et al., 2015, for a more skeptical view based on changes over time). In a recent article in

Science, Jean et al. (2016) use transfer learning and the VGG-F neural network model to extract

information on night lights, infrastructure and agriculture from satellite imagery for the purpose
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of predicting local area poverty levels in five African countries. Their procedure directly associates

abstract features extracted by the neural network with quantitative economic data aggregated into

community-level clusters. A similar paper published on Cornell arXiv by Suraj et al. (2017) utilizes

transfer learning and a modification of the VGG CNN-S convolutional neural network architecture

to construct a predictive model that correlates socioeconomic indicators with abstract features

generated by the network from satellite images of communities taken across India.

Our methodology complements these approaches by enabling the extraction of exact, easily

interpretable features (building square footage or the precise location of buildings, for example) at

the level of individual objects, facilitating a broader range of meaningful economic analyses, espe-

cially with respect to changes over time. Methods which directly associate abstract features with

quantitative measures of economic well-being, even if they perform well in the cross-section, do

not capture several object-level features necessary to most comprehensively chart economic devel-

opment. One such feature is the spatial relationship between objects across time. While abstract

methodologies are capable of, for example, accurately associating imagery containing buildings of

varying textures and sizes with economically relevant metrics of well-being, they are effectively

blind as to whether or not objects have changed location. For example, when such a model is

applied to multiple images of the same geographical location taken several years apart, if every

image contains structures (i.e. buildings, roads, agricultural plots) of similar quality and in roughly

equal proportion, the abstract models will regard them as roughly equal in economic well-being.

Effectively, nothing will be detected. However, if the images represent, for example, a commu-

nity pre-disaster and post-rebuilding, such that the buildings within later images are in entirely

different locations, this lack of sensitivity to changes in spatial arrangements across time proves

detrimental, as the destruction and reconstruction pass undetected. Since high-quality satellite

imagery for specific geographic locations at specific, historically relevant points in time often does

not exist, the ability to detect even highly subtle markers of economic change is paramount. Be-

cause our methodology measures the location of specific objects in satellite imagery across time,

it enables the detection of changes at a greater level of detail than the abstract methodologies,

which will improve the quality of the economic analyses which depend on the extracted informa-

tion. Furthermore, if necessary, object-level features can be aggregated to produce community or

population-level features while the opposite is not true, and so capturing features at the greatest

possible level of detail enables valuable economic analyses at every other level of detail.

Moreover, Jean et al. utilizes nightlight data in an intermediate training step to encourage

the network to learn other features associated with variations in nightlight luminosity, such as

the material from which a rooftop is constructed or distance from urban areas, which are better

overall predictors of economic outcomes in their regions of interest. Our targeted, pixel-wise image
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segmentation approach improves on this procedure by enabling the direct isolation of the desired

end feature. For example, given the appropriate training dataset buildings of a specific class or

category can be segmented directly and distances between urban and rural regions can be calculated

explicitly, without reliance on the controversial nightlights proxy.

More generally, researchers have made attempts at solving the object-level infrastructure seg-

mentation problem since the late 1980’s (Huertas and Nevatia, 1988). Two primary schools of

thought have formed regarding the appropriate methodology for doing so. Many, following the

example of Huertas and Nevatia, believe the solution lies in image processing, and utilize meth-

ods such as parallel edge detection, line-linking, and measures of regional pixel variance to iso-

late buildings hypotheses (Saeedi and Zwick, 2008). Others believe that recent developments in

machine learning algorithms and the science of computer vision offer a more effective solution.

Ghaffarian and Ghaffarian (2014) utilize a parallelepiped classifier and achieve a 0.779 pixel-wise

average F1 score, 0.884 average precision and 0.717 average recall across a primarily urban dataset.

Our methodology is competitive with these results despite the unique challenges associated with

building classification in Aceh, including the presence of dense forest canopy which which eclipses

building edges in rural regions, tropical agricultural features which share qualitative characteris-

tics (color, shape) with building rooftops, and very noisy post-disaster 2005 imagery taken at a

suboptimal angle. Because imagery of historical disaster is limited to the fixed body of images

which happened to be recorded at the time, methods robust to potential impurities are essential

in capturing its value. Figure 1 below displays one such difficult image in our training data set.

With access to additional satellite information, especially LIDAR, classification results can

be dramatically improved (Du et al., 2016). However, as stated, any study of historical change

will require methods which are suited to whatever photographic information was captured in the

past. As such, developing a procedure capable of highly accurate classification utilizing only the

information available in historical satellite imagery has the potential to substantially advance the

literature.

3 Data and Preprocessing

Our raw data consists of six QuickBird satellite images provided as part of a grant from the

DigitalGlobe Foundation. The dataset is split into three pairs of images spanning a five year

period, two from January 22, 2005 (one month post-tsunami), two from July 30, 2007, and two

from Feb 23, 2009, ensuring a wide variety of the relevant deconstruction and reconstruction

markers were captured across time. Within each pair, one image was captured using a high-

spatial-resolution, grayscale panchromatic sensor, while the other was captured using a 4-Band,
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Figure 1: Notice the scattered destruction and non-perpendicular angle at which the image was
taken. These factors make classification more difficult, especially relative to the usual urban,
developed country segmentation problems common in the literature.

RGB + Infrared multispectral sensor. The images were stored as 11-bit integer .tiff files and

georeferenced appropriately. An example of one such pair of images is displayed in figure 2.

3.1 Gram-Schmidt Pansharpening

Using the Environmental Systems Research Institute (Esri) ArcMap software, we applied the Gram-

Schmidt pansharpening transformation as described by Laben and Brower (1998) to each pair of

images in order to combine the panchromatic and multispectral information in such a way that

both the high spectral resolution of the multispectral image and high spatial resolution of the

panchromatic images could be leveraged in our analysis. We selected this approach over other

common pansharpening approaches including Brovey, Zhang, and IHS, because empirical work

with similar satellite imagery suggests Gram-Schmidt to be most effective at improving the spatial

resolution of the multispectral images while preserving the spectral and radiometric resolutions of

the original image (Belfiore et al., 2006; see Maglione et al., 2016 for a description of the Brovey,

Zhang, and IHS methods).

The procedure begins by computing a simulated, grayscale, low resolution panchromatic band

as a linear combination of our four multispectral bands, R,G,B, and NIR. Each band is encoded
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Figure 2: From top left, clockwise: A panchromatic image, the panchromatic image close-up, a
multispectral image, the multispectral image close-up. Notice the higher spatial resolution of the
panchromatic image at the cost of its color properties. These tiles are a subset of a larger satellite
image taken February 23, 2009

as an MxN matrix for which the ith, jth value represents the Red, Green, Blue, or Near-Infrared

value of the pixel at the ith, jth position in the image. Because the images are represented by

11-bit integers, these values range from 0 to 2048, where values closer to zero are less intense (more

black in the case of RGB, less heat-emitting in the case of NIR). Creating the simulated low-

resolution panchromatic image requires determining the coefficients by which we weight each matrix

in calculating the linear combination. These coefficients are dictated by the physical properties of

the sensor used to capture the images, and are computed by the following formulae, where OTk

represents the optical transmittance for band k, SRk represents the spectral response of band k,

SRp represents the spectral response of the original panchromatic image, and λ is the wavelength

of incoming light recorded by the sensor:
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Rwt =

∫ 0.7

0.6

OTR(λ) ∗ SRR(λ) ∗ SRp(λ) dλ

Gwt =

∫ 0.6

0.5

OTG(λ) ∗ SRG(λ) ∗ SRp(λ) dλ

Bwt =

∫ 0.5

0.4

OTB(λ) ∗ SRB(λ) ∗ SRp(λ) dλ

NIRwt =

∫ 0.9

0.7

OTNIR(λ) ∗ SRNIR(λ) ∗ SRp(λ) dλ

According to Esri, for the optical transmittance and spectral response of the QuickBird satel-

lite’s hardware, Rwt ≈ 0.85, Gwt ≈ 0.70, Bwt ≈ 0.35, and NIRwt ≈ 1.00 (Esri, 2016). Once the

coefficient weights are determined, we generate the simulated panchromatic band by straightfor-

ward linear combination:

PanSim = R ∗Rwt +G ∗Gwt +B ∗Bwt +NIR ∗NIRwt

After the simulated panchromatic band is determined, we treat each band as a high-dimensional

(M*N dimensional for an MxN image) vector, and starting with PanSim as the first vector, v1

apply Gram-Schmidt orthogonalization. Given arbitrary, linearly independent vectors v1...vk, the

standard Gram-Schmidt orthogonalization procedure returns a sequence of orthogonalized vectors

represented by u1...uk (Shifrin, 2011):

uk = vk −
k−1∑
x=1

φ(vk, ux), where φ(vk, ux) =
< ux, vk >

< ux, ux >
ux

In the modified process used for pansharpening, the mean value for each band is subtracted from

each pixel in that band before performing orthogonalization, converting the original Gram-Schmidt

inner products into covariances (Maurer, 2013). Therefore, the kth newly transformed, orthogonal

band constructed from the previous k− 1 bands and representing the transformed version of band

vk, is given by:

uk = (vk − µk)−
k−1∑
x=1

φ(vk, ux) ∗ ux,

where µk, is the mean value of band vk, and where:

φk(vk, ux) =
σ(vk, ux)

σ2(ux, ux)
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The value σ(vk, ux) represents covariance between each given Gram Schmidt band ux and an

original band vk as determined by (for an MxN image):

σ(vk, ux) =

∑MN
j=i (ux,i − ūx)(vk,i − v̄k)

MN − 1

And for which ūx is the mean of band ux and v̄k is the mean of band vk (equivalent to µk). The

correlation between ux and vk is divided by covariance of the Gram-Schmidt band ux with itself,

which is equal to its variance. Following this procedure, the transformed Gram-Schmidt bands

u1...uk are decorrelated.

Once the data has been decorrelated, we apply a reverse transform to return it to the mul-

tispectral band space. First, we construct a gain and bias adjusted version of the original high

resolution panchromatic band. This is achieved by stretching the high resolution panchromatic

image, P, such that the mean and standard deviation of its pixel elements match those of the first

element in our transform procedure, the simulated panchromatic band PanSim.

This stretching ensures the preservation of the spectral characteristics of the original multi-

spectral data (Laben and Brower, 1998). Then, up-sampling of the multispectral bands is per-

formed to ensure their dimension matches that of the original panchromatic image. Finally, using

the gain and bias adjusted panchromatic band in place of PanSim as u1, the process is reversed

by applying an inverse transform to generate the newly pansharpened bands v1...vk:

vt = (ut + µt) +

k−1∑
x=1

φ(vk, ux) ∗ ux

Discarding the gain and bias adjusted panchromatic band, the result is an image in the original

multispectral colorspace with both high spatial and spectral resolution. The Gram-Schmidt pan-

sharpened versions of the images in figure 2 are displayed in figure 3.

3.2 Data Ground-Truthing

After pansharpening is performed, several subsections of each satellite image were manually labeled

with ground truth information in order to generate the training data set, or the subset of the data

from which the neural network algorithm will learn to distinguish the details corresponding to the

different classes we have defined. In each of these subimages, the outlines of all building polygons

were labeled by our research team. An example of the result of this procedure is provided in figure

4. Once the labels were complete, all area within each polygon was assigned to the appropriate

class: building vs. non-building. The result was a one-band MxN integer table associated with

each MxN subimage containing ground truth information for each pixel. The total number of

building labels vs. other labels per year are given in table 1. Due to the lack of NIR information
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Figure 3: Left: The full pansharpened version of the tile seen in figure 2. Right: The pansharp-
ened subset of the tile seen in figure 2. Note the combination of the spectral resolution of the
multispectral image and the spatial resolution of the panchromatic image.

in the pre-trained VGG-16 weights which are initialized in our SegNet model, we stripped away

the NIR band from each image, sacrificing some information for increased computational efficiency

and access to the powerful VGG-16 weights described in section 4.3.

Figure 4: All building pixels in this subsample of the February 2009 image have been labeled.
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Label Building Other Yearly Total
2005 2,686,268 5,313,732 8,000,000
2007 3,540,384 19,459,616 23,000,000
2009 3,188,978 20,811,022 24,000,000
Class Total 9,415,630 45,584,370 55,000,000

Table 1: The number of manually labeled pixels per category, per year.

3.3 Neural Network Preprocessing

Once sufficient ground-truth information had been established, we sliced, normalized, and applied

affine transformations to the images to prepare them for processing by the neural network and

to maximize their value. First, we sliced each training subimage (and its associated integer truth

table) from its original size into 100x100 pixel subslices. This was to decreases the amount of

memory required to operate on each minibatch during the training procedure. We randomly set

aside 30 percent of our training images for post-algorithm validation in order to determine the

performance of our algorithm using novel samples on which it was not explicitly trained. The

remaining 70 percent of the images constitute the training data set.

During its optimization phase, or training phase, the convolutional neural network applies a

set of fixed hyperparameters, including learning rate α, momentum ψ, and L2 weight decay λ, all

of which are described in section 4. In applying these values across a wide variety of calculations

spread through many diverse layers, better results are usually associated with training data that

is normalized so that no matter the range of values associated with a particular calculation, the

hyperparamters remain meaningful relative to that range. Therefore, we zero-center normalize the

100x100 images in our training set. This is accomplished by subtracting the pixel-wise mean image

from every image in the training data set.

Finally, we apply affine transformations to artificially augment the dataset. This allows us

to capture patterns in imagery which may exist in the real world but for which we do not have

specific examples in our training data, resulting in a neural network model far more robust to

novel information. Our affine transformations include translations, rotations,and reflections. As

such, each image produces a derivative image which is translated between -8 and 8 pixels in the

horizontal or vertical direction, rotated a random angle between 0 and 360 degrees, and then

reflected over its central vertical or horizontal axis with 50 percent probability per axis. These

transformations seemed natural, as most geographical features visible on a map could foreseeably

also exist in flipped, rotated, or translated states. The result is a massive increase in training data

size and a reduction in the likelihood of overfitting, an issue which occurs when a neural network

learns a specific dataset too precisely at the expense of recognizing more generalizable, broadly

applicable patterns which would enable accurate classification on novel data. Naturally, when an
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affine transformation is applied to an element of the training set, it is also applied to the associated

ground-truth integer table.

In this experiment, the final result of our preprocessing pipeline was a training set of 100x100

properly pansharpened images associated with ground truth information pertaining to the buildings

we hope to detect. Seventy percent of these images were directly used in training, while 30 percent

were set aside for validation post-training to determine the accuracy of our network. Those which

were used for training had been normalized and augmented with various affine transformations in

order to increase the robustness of our model and reduce overfitting.

4 Neural Network Methodology and Implementation

SegNet is a deep convolutional encoder-decoder neural network model commonly applied to image

segmentation tasks due to its superior accuracy and computational efficiency in training (Garcia-

Garcia et al., 2016). In order to maximize its value given our training data, we trained one SegNet

network to perform the desired classifications for each image year. Each network classified pixels as

building vs. other for each of the three image years, 2005, 2007, and 2009. We split the algorithm

into discrete times because images taken in 2005 are drastically qualitatively distinct from those

taken in 2007 which are themselves distinct from those of 2009, and so the neural network will

likely prefer vastly different features for identifying a particular class from 2005 imagery relative

to those unique to that class in 2009 imagery. Furthermore, SegNet trains efficiently relative to

fully-connected neural network models and so training additional networks is not computationally

expensive. Our SegNet implementation was constructed in MatLab 2017B and trained using a

GTX1080 GPU with 3gb on-board RAM.

4.1 SegNet Architecture Overview

Our implementation of the Badrinarayanan et al. (2016) SegNet model propagates data through

ninety-one layers. The first layer is the 100x100x3 size image input layer which essentially holds

our 100x100x3 RGB input images before passing them through the network. The next 44 layers

represent the encoder part of the network which performs the mathematical operations described

in section 4.2 to extract features which can differentiate between classes while constantly applying

max pooling (a form of downsampling) in order to increase memory efficiency and training speed.

The following 44 layers are the decoder layers, which extract relevant features in a similar manner

while constantly applying max unpooling (a form of upsampling) in order to translate the encoded

data into an interpretable form. Both the encoder and decoder sections of the network utilize

convolutional, batch normalization, and ReLU layers in order to extract abstract image features
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and learn image patterns effectively. The ninetieth layer applies a softmax function to the data

to convert weight information to probabilities, and the ninety-first and final layer calculates a

weighted cross-entropy cost function across the classification categories, determining the network’s

error rate and whether or not adjustments made during training have improved or diminished net-

work performance. Table 6 in Appendix A contains the exact network architecture information,

including the precise ordering of the 91 layers. Training utilized stochastic gradient descent with

hyperparameters: momentum ψ, initial learning rate α, and L2 weight decay λ. These hyper-

paramters, the number of elements chosen in each mini-batch and the number of epochs for which

training persists are unique to each network, and are selected empirically via a randomized grid

search as described in section 4.6. The mini-batch size is the number of images in the training set

fed through the neural network during a single forward and backpropogation, while the number

of epochs is the number of times the entire dataset is passed through the network. The training

data was randomly permuted before each epoch to ensure the neural network wasn’t improving

classification accuracy by learning image order. The role of the hyperparameters in training is

discussed in section 4.4.

4.2 Layer Operations

Both the encoder and decoder portions of the network utilize convolutional layers in order to

extract meaningful patterns in the data which are used to distinguish elements in an image. The

convolutional layers pass matrices, or filters, across each image to extract mathematically pertinent

identifying information from each region via the convolutional operation described below. As

described in (Karpathy and Li, 2015a), three parameters determine the operation applied by each

convolutional layer: the number of filters n, the size of each filter M , and the step-size (or stride)

t when passing the filter across the image. Each of the n filters is an MxMxQ matrix, where Q

is the depth of the inputs from the previous layer of the network, on which convolution is being

performed. For every convolutional layer in this SegNet implementation, M = 3 and t = 1. So, for

example, when passing from our 100x100x3 input layer to the first convolutional layer, we apply

n = 64 filters of size 3x3x3 with stride length t = 1 to ensure each filter performs the convolution

operation at every pixel in the input image without jumping over any. Before convolution proceeds,

the boundaries of the image are padded with zeros in order to ensure the convolution operation

is always well-defined. The values contained in the filters, or the weights of the filter, and the

bias term associated with each filter are initialized as explained in section 4.3. Updates to these

weights and biases are what enable the network to learn during training. In general, the elements

which the network updates to increase classification accuracy during the training phase are called

parameters.
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As explained in (Karpathy and Li, 2015a), we perform the convolution operation by passing

each 3x3xQ-dimensional filter across the image, calculating the dot product between the contents

of the filter (its weights) and the input at each of the Q levels, and then summing the results

and adding the bias term. As such, the output for each filter is a two-dimensional matrix which

contains the scalar output of each of these procedures. The 2-dimensional matrices representing

this operation performed for each of the k filters are concatenated along the third dimension to

produce the output. Therefore, in aggregate, the convolution process for each 3x3xQ subregion of

our input image, the 3x3xQ matrix, Ii,j , centered at the ith, jth element of the input, is described

by the formula below. Ultimately, the output from each convolutional layer is a three dimensional

matrix whose ith, jth, kth value is determined by this formula. Note that the operation • does not

represent standard matrix multiplication, rather it represents the scalar dot product between the

elements of two matrices flattened into vectors.

Convolutional Outputi,j,k =

Q∑
x=0

(Fk,x • Ii,j,x) + bk for k = 1...n

Where Fk,x and Ii,j,x represent the kth filter of weights and subsample matrix of the input data

centered at i, j, respectively. One such convolutional output is calculated for each element of the

mini-batch passed through the network to the next layer.

Both encoder and decoder layers apply batch normalization layers between convolutional and

ReLU layers in order to reduce the tendency for small changes to weights early in the network

to dramatically alter the value of weights down the pipeline. This phenomena, termed internal

covariate shift by Ioffe and Szegedy (2015), makes later weights less likely to converge to stable

values and can force them to inhabit values beyond the effective range of the network hyperparam-

eters. Normalizing layer inputs addresses these issues and allows the use of higher learning rates

while reducing the influence of initialized weight values on the network’s ultimate success (Ioffe

and Szegedy, 2015). Much like the weights of convolutional layers, γ and β, two parameters fun-

damental to the batch normalization procedure, are learned during training. For a mini-batch of

size m, the batch normalization layer receives m of the PxRxk matrix outputs from the preceding

convolutional layer.

As described in Ioffe and Szegedy (2015), for each depth slice k we calculate the normalization

mean µk and normalization standard deviation σk with respect to all PxR elements in the two-

dimensional depth slice at level k across all m elements of the mini-batch. So, for xi representing

one of the m*P*R elements at depth k within one of the m matrices of the mini-batch:

µk =
1

mPR

mPR∑
i=1

xi
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σ2
k =

1

mPR

mPR∑
i=1

(xi − µk)2

Using these quantities, we calculate x̂m,k, the normalized version of the kth depth slice of the

PxRxk input matrix representing the mth element of the mini-batch:

x̂m,k =
xm,k − µk√

σ2
k + ε

The small constant ε is equal to 0.00005 and numerically stabilizes the function in the event

σk is very small without affecting the calculation otherwise. Finally, ym,k is the scaled and shifted

version of each normalized observation x̂m,k:

ym,k = γx̂m,k + β

In aggregate, the batch normalization layer performs a normalization procedure which ensures

different elements of the same feature map at different locations, or elements originating within

different mini-batches but residing in the same k-depth layer at different spatial locations, are

normalized in the same way (Ioffe and Szegedy, 2015). Because the same convolutional filter

weights act on every element across a matrix at a given depth layer, normalization procedures

which disproportionately modify particular regions of each depth slice reduce the effectiveness of

the convolutional neural network model by shifting the values in those regions beyond the range in

which the learned weights are meaningful, artificially extending and hindering the training process.

Thus, this method of batch normalization enforces a more uniform distribution of values across the

network, increasing training efficacy while respecting the unique properties of the convolutional

neural network model. The normalized depth-slices are also multiplied by a factor of γ and offset

by a factor of β, allowing the network to learn many distinct additional transformations which

may be beneficial, including the identity in the event transformations prove only detrimental. The

normalized mini-batch is passed to a ReLU layer.

ReLU layers are used by both the encoder and decoder layers to delinearize the neural network

and allow it to identify more complicated, nonlinear relationships. A ReLU layer applies the ReLU

activation function to every element of its input. The ReLU activation function, as defined by Nair

and Hinton (2010), is:

f(x) = max(0, x)

Max-pooling layers are applied by the encoder layer to reduce the amount of data to process

while preserving critical information in order to improve network efficiency and enable the network

to extract more abstract features. Max pooling layers are determined by a stride parameter, t

and MxM window size. In our implementation, for each max pooling layer, M = 2 and t = 2. In
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max pooling, the 2x2 matrix passes across the image and assigns the maximum value within its

boundaries to represent that region in the output. The stride length of two means these matrices

are non-overlapping, unlike the convolutional filters. In our algorithm, the result of max pooling on

an NxNxQ input image is an N
2 x

N
2 xQ mathematically precise abstraction of the original input.

In SegNet, during max pooling the index, or location of the maximum feature value relative to

each 2x2 pooling matrix, is stored for use by the decoder (Badrinarayanan et al., 2016). The

max-pooled matrix is passed to the next layer.

Each max-pooling layer in the encoder corresponds to a max un-pooling layer in the decoder

which performs non-linear upsampling to reverse the data compression performed by the encoder

after many of the computationally-expensive operations have been completed and abstract fea-

tures have been learned. The decoder upsamples its input using the indexes recorded during its

corresponding max-pooling layer in order to deposit the value being upsampled in the appropriate

location in the new upsampled matrix. For example, if the original max-pooling layer determined

the maximum value in the 2x2 matrix it sought to downsample was in the bottom right corner,

the element being upsampled is placed in the bottom right corner of the new 2x2 matrix which

replaces it during upsampling. Other elements of the upsample matrices are set to zero. This pro-

cedure improves boundary delineation and reduces the number of weights which must be updated

during training in comparison with other segmentation networks and relative to other variations

on upsampling (Badrinarayanan et al., 2016). The decoded output is then passed to the next layer.

The softmax layer is the penultimate layer in the neural network in which a softmax function

is applied to its input, the final feature maps generated for a minibatch by the cumulative action

of the network. Each feature map is 100x100xk where k is the number of classes we hope to

distinguish, such that the ith, jth entry in the feature map matrix corresponds to the ith, jth pixel

in the original input image. The elements in each of the k depth dimensions of the matrix are

features whose values are dependent on the parameters (weights, biases, γ and β) of every previous

layer, and which the softmax classifier will use as features associated with the ith, jth pixel in

determining to which of the k categories the ith, jth pixel belongs. The softmax function maps

each of the k features across the depth layers corresponding to index i, j with the probability pixel

(i, j) is in a particular class l. The function is represented by:

f(xl) =
exl∑k

z=1 e
xz

for l = 1...k

where xl is the element of the k-dimensional depth vector associated with the likelihood pixel (i, j)

is a member of class l and k is the total number of classes (Karpathy and Li, 2015b). So, for each

pixel at location (i, j), the softmax function maps its real-valued features, the k depth values at
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position (i, j), to the interval [0,1] so that they can be interpreted as probabilities. Elements are

considered classified as members of the class for which their softmax probability score is highest.

The softmax classifier feeds the three-dimensional 100x100xk matrices, one for each image in the

mini-batch, to the final cross-entropy layer. This layer will be fundamental when we perform

the backpropogation step as described in section 4.4 and update the network weights in order to

fine-tune the network and improve classification accuracy.

During backpropagation, weights are adjusted in order to minimize the cross-entropy loss func-

tion, defined by:

Cross-Entropy = −
k∑

l=1

ρl(ŷml)(log(yml))

where ŷml is 1 if observation m is an element of predetermined class l and 0 otherwise, and yml

is the predicted probability observation m is an element of class l via softmax output (Bishop,

2006). This implies cross-entropy will be lowest when observations are given a high probability of

belonging to their ground-truthed class. The weight ρl is calculated via median frequency balancing

as proposed by (Eigen and Fergus, 2015), and more heavily weights classes which are less prevalent

in the training set in order to ensure the network considers them when minimizing cross-entropy.

Otherwise, the network may seek to optimize around only the most prevalent classes, accepting

any small increases in cross-entropy which would arise from misclassifying examples from sparse

classes. For a given class l, ρl is given by:

ρl =
medfreq

freq(l)

where freq(l) is the number of pixels of class l divided by the total number of pixels in images where

at least one pixel of class l is present, calculated across the entire training data set, and medfreq

is the median value of the set freq(l1)...freq(lk), or the median of the set of values returned by

the freq operation with respect to all k classes. In this way, sparse classes return a lower freq

value which increases the applied weight ρl and ensures increasing classification accuracy for sparse

classes is more strongly rewarded. Therefore, by minimizing cross-entropy, we reward the network

for adjusting its weights such that the probability an observation is assigned to its proper ground

truth class increases, and account for class imbalances in our training set. In the SegNet model, the

total cross-entropy cost function J for a given minibatch is taken as the sum of the cross-entropy

loss functions (per pixel) across every element of the minibatch.

4.3 Weight Initialization and Forward Propagation

The set of convolutional layers in the encoder portion of the SegNet network is topologically

identical to the set of convolutional layers within the VGG-16 neural network (Badrinarayanan
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et al., 2016). VGG-16 is an extremely powerful neural network model for image classification

but also requires immense quantities of training data to perform well on a specific classification

task. However, we leverage the VGG-16’s more general image classification power by initializing

the convolutional weights of the encoder portion of our network with the weights from a VGG-16

model pre-trained on the ImageNet database which contains over one million training images split

among 1000 classes (Deng et al., 2009). Because of this procedure, our network initializes filters

capable of extracting useful information and accurately identifying objects in imagery in a general

sense without requiring such immense stores of training data pertaining to our classification task

in specific (Russakovsky et al., 2015). Because these weights are valuable, they are not adjusted in

training. In order to tailor the network to our specific classification task, and so it can adjust its

parameters to generate filters responsive to our chosen classes, we must initialize and then modify

the parameters belonging to the layers within the decoder portion of the network: the convolutional

weights, and the γ and β elements of the batch normalization layers. The decoder’s convolutional

weights are initialized via the MSRA method described in He et al. (2015), in which they are pulled

from a zero mean Gaussian distribution with standard deviation
√

2
nl
, where nl = (k2l ) ∗ (dl−1),

kl is the convolutional filter size in the currently initializing layer and dl−1 is the number of filters

in the previous convolutional layer. Additionally, the batch normalization layers’ γ and β are

initialized to one and zero.

Training the network occurs in two main steps, forward propagation and back propagation.

In our forward propagation step, we pass information through the layers of SegNet in the order

described in Appendix A and by performing the operations described in section 4.1. This generates

a cross-entropy value. Back-propagation is the process of updating the weights in order to reduce

this cross-entropy value. Each mini-batch undergoes a forward and backpropogation step, until the

entire dataset has been exhausted, constituting one epoch. The network then continues iteratively

training for the number of selected epochs, updating the weights in response to changes in cross-

entropy.

4.4 Backpropogation

Backpropogation is the process by which network weights and biases are updated during training

in order to minimize our cross-entropy cost function J . Our SegNet implementation uses mini-

batch gradient descent with momentum and L2 regularization. Its foundation is in batch gradient

descent, in which we consider the partial derivatives of the cross-entropy cost function as calculated

across every element of the training dataset with respect to each of the parameters being adjusted

by the network. This allows us to determine how the cost function varies with adjustments in each

parameter, so by adjusting the parameters accordingly we can minimize total cross-entropy. In
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this procedure, each newly updated parameter W ′m is calculated by:

W ′m = Wm − α
∂

∂Wm
J(W )

where Wm is the original parameter and α is the learning rate hyperparameter (Ng, 2012). The

subtraction term of the equation dictates that when cross-entropy is locally decreasing as a pa-

rameter increases, that parameter is increased, while when cross-entropy is locally increasing as a

parameter increases, that parameter is decreased. Performing this operation for every parameter

in the network progressively minimizes cross-entropy. The learning rate hyperparameter α deter-

mines how rapidly the network proceeds towards an optimum by modifying the magnitude of each

update. Too large a rate can result in a jump size which passes over an optimum completely, and

too low a learning rate may prevent the algorithm from reaching an optimum at all, or trap it in

a local optimum. Thus, fine tuning of this hyperparameter is required. As for all the hyperpa-

rameters discussed in this section, the value for alpha was chosen by randomized grid search as

discussion section 4.6.

Mini-batch stochastic gradient descent (SGD) is a computational improvement on the batch

gradient descent model. SGD computes the required partial derivatives based on the elements of

a mini-batch rather than the entire training set. This is useful for two reasons. First, it vastly

reduces the amount of data required to make each step towards an optima which reduces training

time, and second, calculating the gradient with random samples can introduce enough randomness

into the results to knock the algorithm out of a local minimum in which it would otherwise be stuck

and towards a global one (Bottou, 1991). At the base level, SGD for the parameters contained in

vector W is dictated by the following equation in vector notation:

W ′ = W − α∇WJ(W ;x1...n)

where W ′ represents the vector containing updated parameters and x1...n are the n elements of

the mini-batch across which J is calculated (Ruder, 2017).

Our SGD operation also applies momentum and L2 regularization. Momentum adds a fraction

of the previous weight update to the current weight update, so weights which are being updated

in a consistent direction are updated in that direction more rapidly. Primarily this facilitates

the gradient descent algorithm’s skipping over local optima in favor of global optima, as were an

adjustment to network parameters going to trap cross-entropy in a local optima, where gradient

is zero, the momentum factor would still force the parameters to update in the direction of their

previous update, dislodging cross-entropy from the local minimum and towards the global one. The

momentum factor also smooths the convergence of the parameters such that they cannot oscillate
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erratically in directions not along the dominant gradient, as an adjustment in one direction followed

by an immediate adjustment in the opposite direction is met by a momentum term of opposite

sign. This forces the network to update its parameters in response to the predominant gradient

more effectively (Murphy, 2012). Adding momentum to our gradient descent algorithm generates

the equation:

W ′ = W − α∇WJ(W ;x1...n) + ψ(W −W o)

where ψ is the momentum hyperparameter and W o is the vector containing the parameters from

the previous backpropogation step.

Adding the L2 regularization term to our cross-entropy cost function discourages model over-

fitting by reducing variance (Murphy, 2012). Our L2 regularized cross-entropy J2 is given by:

J2 = J +
λ

2
(w • w)

where w is a vector containing only the convolutional weights, λ is the weight decay hyperparam-

eter, and • represents the vector dot product. This serves to increase cross-entropy error when

the weights become large, unless such weights considerably improve cross-entropy. Therefore, the

network is incentivized to utilize a broader network of smaller weights, preventing a small network

of weights with large values from dominating the model which would result in massively increased

variance.

4.5 Segmenting a Test Image

When an image is submitted for classification by the trained network, normal forward propagation

is performed and each pixel in the image is classified by the softmax layer in response to the features

generated by forward propagation. The only distinction between the training forward propagation

step and the final image segmentation procedure is that the batch normalization layers use the

mean and variance calculated relative to the entire training set during training, rather than an

estimate determined during any of the minibatching stages of training or derived from the testing

image or images (Ioffe and Szegedy, 2015). Figure 5 displays a novel segmented 2007 image as an

example output from this procedure.

4.6 Empirically Determining Hyperparameters

We apply a randomized grid search as described in Bergstra and Bengio (2012) in order to determine

nearly-optimal values of learning rate α, momentum ψ, L2-regularization term λ, mini-batch size,

and number of epochs with respect to each of our 2005, 2007, and 2009 networks. We sample

60 random points from the five-dimensional space spanning α = [0.1,0.001], ψ = [0.75,0.95], λ =
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Figure 5: In this image, pixels classified as buildings are given a pink translucent overlay and
pixels classified as other are given a green translucent overlay. Pixels which ought to be classified
as buildings but are classified as other are false negatives, while pixels which are classified as
buildings but ought to be classified as other are false positives.

[0.001,0.00000001], mini-batch size = [4,16], and number of epochs = [40,120]. We then test the

network at each of the 60 points and compare the results. This procedure has the advantage over

systematic brute-force grid search in that it is far more computationally efficient, requiring only 60

evaluations to provide a 95 percent probability that at least one of the points is within the 5 percent

interval around the global maximum. This is true probabilistically, if 1− 0.05 is the probability of

missing the 5 percent region, (1 − 0.05)p is the probability of missing it p times, and for p = 60,

(1− 0.05)60 = 0.0461. So, the probability of hitting the 5 percent region is 1− 0.0461 = 0.954, or

95.4 percent (Anderson, 2017). Similarly, the probability of hitting the region within 10 percent

of the optimum at least once is 99.8 percent. Furthermore, a uniform grid may systematically

pass over the region containing the global maximum, while the randomized grid search will not.

The resulting hyperparameters determined by this procedure are displayed in table 2 below. The

"best" combination of hyperparameters for the purposes of this paper had a high F1 score, as

defined below, but also balanced high precision with high recall, and so F1 score was not strictly

optimized. In future applications of this procedure to chart markers of economic development for

specific purposes, randomized grid search can be used to optimize precision, recall, or any other

accuracy metric pertinent to the specific nature and purpose of the classification task.
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Net Learn Rate Momentum L2 Regularization Mini-Batch Size Num Epochs
2005 0.0842 0.782 0.000431 16 115
2007 0.0314 0.802 0.000897 10 99
2009 0.0205 0.834 0.000869 12 81

Table 2: Results of the randomized grid search algorithm for each hyperparameter and every
network.

4.7 Results

After training the 2005, 2007, and 2009 networks with the selected hyperparameters, we applied

each network to segment the 30 percent of held-out imagery corresponding to its year and computed

a confusion matrix representing the results. The results for each year are summarized by precision,

recall, and F1 scores as determined by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

Where TP is the number of true positive classifications, FP is the number of false positive classi-

fications, and FN is the number of false negative classifications (Powers, 2011). Higher precision

implies that when an object is deemed a building it is very likely to be one, while higher recall

implies more pixels are accurately classified as buildings, independent of the quality of those clas-

sifications. Since both precision and recall are important, the F1 score, the harmonic mean of

precision and recall, enables us to capture the effects of both metrics in one quantity.

2005

True

Building Other

P
re
di
ct
ed Building 676,481 242,951

Other 132,986 1,347,582

F1: 0.7826

Precision: 0.7358

Recall: 0.8357

Table 3: Left: Confusion matrix for the 2005 segmentation. Right: 2005 precision, recall, and F1
score.

2007
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True

Building Other

P
re
di
ct
ed Building 929,838 237,680

Other 154,247 5,578,235

F1: 0.8259

Precision: 0.7964

Recall: 0.8577

Table 4: Left: Confusion matrix for the 2007 segmentation. Right: 2007 precision, recall, and F1
score.

2009

True

Building Other

P
re
di
ct
ed Building 841,097 263,899

Other 130,133 5,964,871

F1: 0.8102

Precision: 0.7612

Recall: 0.8660

Table 5: Left: Confusion matrix for the 2009 segmentation. Right: Precision, recall, and F1 score
for this procedure.

The results across all three years are represented by the micro-averaged precision, recall, and F1

scores, which take TP, FP, and FN into account across all three classifiers. Micro-averaged precision

is calculated by summing all true positives across all three years and dividing that quantity by the

sum of all true and false positives from all three years. Micro-averaged recall is calculated similarly,

by summing all true positives and dividing by the sum of all true positives and false negatives across

all three years. The micro-averaged F1 score is calculated by taking the harmonic mean of the

micro-averaged precision and recall (Scott and Matwin, 1999; Wang et al., 2015). Micro-averaging

gives each individual pixel classification equal weight in determining the final metrics which is useful

because our per-year datasets do not have exactly the same size. Performing this calculation, our

micro-averaged precision is 0.7667, our micro-averaged recall is 0.8543, and our micro-averaged

F1-score is 0.8081. While the network exhibits superior performance on the qualitatively cleaner

2007 and 2009 imagery, its performance on the 2005 post-disaster imagery is also strong. This

indicates its ability to accurately track economic reconstruction beginning at the very moment of

crisis and even when completely reliant upon more challenging imagery data.

5 Conclusion

This paper outlines a principled preprocessing and image segmentation pipeline which attained

a micro-averaged F1-score of 0.8081 in automatically extracting scientifically useful features from

particularly challenging aerial imagery. Because this methodology enables the objective measure-

ment of change across vast landscapes and through time, information which is often difficult or

impossible to measure by survey, supplementing the population science literature and survey data
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with these extracted metrics will enable population scientists to more completely understand the ef-

fects of economic deconstruction and reconstruction on populations, incorporating data previously

unavailable in strengthening their arguments. By adjusting the training data, future implementa-

tions of this methodology can be utilized to extract other economically valuable features, including

markers of road or agricultural development.
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Appendices

A Neural Network Structure

The following table lists each computational layer of the neural network in order with a brief

description of the operation performed. The precise operation of each layer is described in section

4.2.

Layer # Layer Type Layer Description

1 Image Input 100x100x3 images with zerocenter normalization

2 Convolution 64 3x3x3 convolutions with stride [1 1] and padding

[1 1 1 1]

3 Batch Normalization Batch normalization

4 ReLU ReLU

5 Convolution 64 3x3x64 convolutions with stride [1 1] and padding

[1 1 1 1]

6 Batch Normalization Batch normalization

7 ReLU ReLU

8 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0

0]

9 Convolution 128 3x3x64 convolutions with stride [1 1] and

padding [1 1 1 1]

10 Batch Normalization Batch normalization

11 ReLU ReLU

12 Convolution 128 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

13 Batch Normalization Batch normalization

14 ReLU ReLU

15 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0

0]

16 Convolution 256 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

17 Batch Normalization Batch normalization

18 ReLU ReLU

19 Convolution 256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]
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20 Batch Normalization Batch normalization

21 ReLU ReLU

22 Convolution 256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

23 Batch Normalization Batch normalization

24 ReLU ReLU

25 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0

0]

26 Convolution 512 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

27 Batch Normalization Batch normalization

28 ReLU ReLU

29 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

30 Batch Normalization Batch normalization

31 ReLU ReLU

32 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

33 Batch Normalization Batch normalization

34 ReLU ReLU

35 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0

0]

36 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

37 Batch Normalization Batch normalization

38 ReLU ReLU

39 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

40 Batch Normalization Batch normalization

41 ReLU ReLU

42 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

43 Batch Normalization Batch normalization

44 ReLU ReLU
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45 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0

0]

46 Max Unpooling Max Unpooling

47 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

48 Batch Normalization Batch normalization

49 ReLU ReLU

50 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

51 Batch Normalization Batch normalization

52 ReLU ReLU

53 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

54 Batch Normalization Batch normalization

55 ReLU ReLU

56 Max Unpooling Max Unpooling

57 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

58 Batch Normalization Batch normalization

59 ReLU ReLU

60 Convolution 512 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

61 Batch Normalization Batch normalization

62 ReLU ReLU

63 Convolution 256 3x3x512 convolutions with stride [1 1] and

padding [1 1 1 1]

64 Batch Normalization Batch normalization

65 ReLU ReLU

66 Max Unpooling Max Unpooling

67 Convolution 256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

68 Batch Normalization Batch normalization

69 ReLU ReLU

70 Convolution 256 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]
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71 Batch Normalization Batch normalization

72 ReLU ReLU

73 Convolution 128 3x3x256 convolutions with stride [1 1] and

padding [1 1 1 1]

74 Batch Normalization Batch normalization

75 ReLU ReLU

76 Max Unpooling Max Unpooling

77 Convolution 128 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

78 Batch Normalization Batch normalization

79 ReLU ReLU

80 Convolution 64 3x3x128 convolutions with stride [1 1] and

padding [1 1 1 1]

81 Batch Normalization Batch normalization

82 ReLU ReLU

83 Max Unpooling Max Unpooling

84 Convolution 64 3x3x64 convolutions with stride [1 1] and padding

[1 1 1 1]

85 Batch Normalization Batch normalization

86 ReLU ReLU

87 Convolution 2 3x3x64 convolutions with stride [1 1] and padding

[1 1 1 1]

88 Batch Normalization Batch normalization

89 ReLU ReLU

90 Softmax softmax

91 Pixel Classification Layer cross-entropy loss

Table 6: Descriptions of the type and function of each neural network layer.
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